產(chǎn)品中心 應(yīng)用方案 技術(shù)文摘質(zhì)量保證產(chǎn)品選型 下載中心業(yè)內(nèi)動(dòng)態(tài) 選型幫助 品牌介紹 產(chǎn)品一覽 聯(lián)系我們
- 迷你磁場(chǎng)傳感器:檢測(cè)心跳的新手段
- 來(lái)源:科技新聞日?qǐng)?bào) 發(fā)表于 2010/10/30
miniature magnetic sensor using a tiny cloud of atoms has successfully tracked a human heartbeat for the first time.
一種采用“微小原子云”技術(shù)的迷你磁場(chǎng)傳感器,第一次成功地跟蹤到了人類的心跳。
In a new study, researchers from the National Institute of Standards and Technology (NIST) and the German national metrology institute tried out the sensors – which until now have been operated mostly in physics laboratories – in a near-clinical setting.
來(lái)自美國(guó)國(guó)家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)和德國(guó)國(guó)家計(jì)量研究所的研究人員,在一項(xiàng)新研究中試驗(yàn)了這種傳感器。盡管直到目前為止,大部分研究尚處于物理實(shí)驗(yàn)室階段,但研究人員一直將臨床應(yīng)用作為目標(biāo)。
The new experiments were carried out at the Physikalisch Technische Bundesanstalt (PTB) in Berlin, Germany, in a building described as having the world"s best magnetic shielding – necessary to block the Earth"s magnetic field and other external sources from interfering with the high-precision measurements.
這項(xiàng)新的實(shí)驗(yàn)是在位于德國(guó)柏林的聯(lián)邦物理技術(shù)研究院(PTB)的一座大樓里進(jìn)行的。報(bào)道稱,這座大樓具有全世界最好的磁屏蔽效果。這項(xiàng)實(shí)驗(yàn)要求隔離地磁和其它外部場(chǎng)源,因?yàn)樗鼈儠?huì)對(duì)高精度的測(cè)量產(chǎn)生干擾。
The NIST sensor – a tiny container of about 100 billion rubidium atoms in gas form, a low-power infrared laser, and optics – measured the heart"s magnetic signature in picoteslas (trillionths of a tesla). The tesla is the unit that defines magnetic field strength.
NIST的傳感器是一個(gè)裝有約1000億氣態(tài)銣原子的小型容器,其內(nèi)部還帶有一個(gè)低功率紅外激光器和光學(xué)器件,可測(cè)量低至皮特斯拉的心臟磁場(chǎng)信號(hào)。(即一萬(wàn)億分之一特斯拉,特斯拉是磁感應(yīng)強(qiáng)度的計(jì)量單位。)
For comparison, the Earth"s magnetic field is a million times stronger (measured in millionths of a tesla) than a heartbeat, and an MRI machine uses fields several million times stronger still (operating at several tesla).
相比心跳,地磁場(chǎng)要強(qiáng)一百萬(wàn)倍(在百萬(wàn)分之一特斯拉數(shù)量級(jí)),磁共振成像機(jī)在靜止時(shí)的磁場(chǎng)就要強(qiáng)幾百萬(wàn)倍(而在工作時(shí),可以強(qiáng)到幾個(gè)特斯拉)。
In the experiments at PTB, the NIST sensor was placed 0.20 inches (five millimeters) above the left chest of a person lying face up on a bed. The sensor successfully detected the weak but regular magnetic pattern of the heartbeat.
在PTB進(jìn)行的實(shí)驗(yàn)中,受試者趴在床上,NIST傳感器置于左胸以上0.2英寸(5毫米)。傳感器成功探測(cè)到心跳所伴隨的微弱而規(guī)則的磁場(chǎng)變化。
The same signals were recorded using the "gold standard" for magnetic measurements, a SQUID (superconducting quantum interference device). A comparison of the signals confirmed that the NIST mini-sensor correctly measured the heartbeat and identified many typical signal features.
研究者同時(shí)利用磁場(chǎng)測(cè)量的“金標(biāo)準(zhǔn)”——超導(dǎo)量子干涉器件(SQUID)對(duì)心跳信號(hào)進(jìn)行了記錄。兩種傳感器記錄的比較,證實(shí)NIST的迷你傳感器確實(shí)探測(cè)到了心跳,并獲得了許多典型的信號(hào)特征。
The NIST mini-sensor generates more "noise" (interference) in the signal but has the advantage of operating at room temperature, whereas SQUIDs work best at –452 degrees Fahrenheit (-269 degrees Celsius) and require more complicated and expensive supporting apparatus.
NIST的迷你傳感器在信號(hào)中產(chǎn)生了較多的“噪聲”(干擾),但具有室溫工作的優(yōu)點(diǎn)。而SQUID要在攝氏-269底(華氏-452度)才能進(jìn)入最佳狀態(tài),并且需要更加復(fù)雜和昂貴的支持裝置。
A spin-off of NIST"s miniature atomic clocks, NIST"s magnetic mini-sensors were first developed in 2004. Recently, they were packaged with fiber optics for detecting the light signals that register magnetic field strength.
作為NIST小型原子鐘的副產(chǎn)品,NIST的這種迷你傳感器最早研發(fā)于2004年。目前,它們被封裝進(jìn)檢測(cè)光信號(hào)的光學(xué)器件,以記錄磁場(chǎng)的強(qiáng)度。
In addition, the control system has been reduced in size, so the entire apparatus can be transported easily to other laboratories.
此外,控制系統(tǒng)的體積更小,這樣整個(gè)裝置到能方便地運(yùn)送到其它實(shí)驗(yàn)室。
The new results, described in the journal Applied Physics Letters, suggest that NIST mini-sensors could be used to make magnetocardiograms, a supplement or alternative to electrocardiograms.
應(yīng)用物理雜志的介紹的這一新結(jié)果,意味著NIST的迷你傳感器可以用來(lái)進(jìn)行磁場(chǎng)測(cè)量,這種測(cè)量可補(bǔ)充或替代心電圖。
Further tests of the NIST atom-based magnetic sensors at PTB are planned and could confirm the potential for more biomedical applications.
目前NIST正計(jì)劃繼續(xù)在PTB對(duì)這種原子磁場(chǎng)傳感器進(jìn)行進(jìn)一步測(cè)試,以確認(rèn)其在醫(yī)學(xué)領(lǐng)域的應(yīng)用潛力。
相關(guān)產(chǎn)品:CM-01
轉(zhuǎn)載請(qǐng)注明來(lái)源:賽斯維傳感器網(wǎng)(tcmtest.cn)